How Far Should Science Go to Create Lifesaving Replacement Organs?

As we envision a new era of regenerative medicine, sci-fi-esque scenarios are raising thorny ethical issues. Just how far is society willing to go?

In the United States, the clock is ticking for more than 114,700 adults and children waiting for a donated kidney or other lifesaving organ, and each day, nearly 20 of them die. Researchers are devising a new way to grow human organs inside other animals, but the method raises potentially thorny ethical issues. Other conceivable futuristic techniques sound like dystopian science fiction. As we envision an era of regenerative medicine decades from now, how far is society willing to go to solve the organ shortage crisis?

Of science, ethics, and us.

The prospect of creating hybrid animals with human parts and killing them to harvest organs has already raised a slew of ethical questions.

I found myself pondering this question after a discussion about the promises of stem cell technologies veered from the intriguing into the bizarre. I was interviewing bioengineer Zev Gartner, co-director and research coordinator of the Center for Cellular Construction at the University of California, San Francisco, about so-called organoids, tiny clumps of organ-like tissue that can self-assemble from human stem cells in a petri dish. These tissue bits are lending new insights into how our organs form and diseases take root. Some researchers even hope they can nurture organoids into full-sized human kidneys, pancreases, and other organs for transplantation.

Certain organoid experiments have recently set off alarm bells, but when I asked Gartner about it, his radar for moral concerns was focused elsewhere. For him, the “really, really thought-provoking” scenarios involve other emerging stem cell-based techniques for engineering replacement organs for people, he told me. “Like blastocyst complementation,” he said.

Never heard of it? Neither had I. Turns out it’s a powerful new genetic engineering trick that researchers hope to use for growing human organs inside pigs or sheep — organs that could be genetically personalized for transplant patients, in theory avoiding immune-system rejection problems. The science still has many years to go, but if it pans out, it could be one solution to the organ shortage crisis. However, the prospect of creating hybrid animals with human parts and killing them to harvest organs has already raised a slew of ethical questions. In 2015, the National Institutes of Health placed a moratorium on federal funding of this nascent research area while it evaluated and discussed the issues.

As Gartner sees it, the debate over blastocyst complementation research — work that he finds promising — is just one of many conversations that society needs to have about the ethical and social costs and benefits of future technologies for making lifesaving transplant organs. “There’s all these weird ways that we could go about doing this,” he said, with a spectrum of imaginable approaches that includes organoids, interspecies organ farming, and building organs from scratch using 3D bioprinters. But even if it turns out we can produce human organs in these novel ways, the bigger issue, in each technological instance, may be whether we should.

Gartner crystallized things with a downright creepy example: “We know that the best bioreactor for tissues and organs for humans are human beings,” he said. Hypothetically, “the best way to get you a new heart would be to clone you, grow up a copy of yourself, and take the heart out.” Scientists could probably produce a cloned person with the technologies we already have, if money and ethics were of no concern. “But we don’t want to go there, right?” he added in the next breath. “The ethics involved in doing it are not compatible with who we want to be as a society.”

Other options, though, just might be.

“The best way to get you a new heart would be to clone you, grow up a copy of yourself, and take the heart out.”

Let’s take a closer look at blastocyst complementation. For starters, it’s worth noting that animal hybrids — including even lab animals that contain human cells or tissues — are not new. These are called interspecies chimeras, colorfully named after a mythological beast, and researchers have long experimented on this front. But the latest big advance unexpectedly came in a 2010 study, when a Japanese team led by geneticist Hiromitsu Nakauchi created mice that were unable to grow their own pancreases. However, when the rodents were still pre-embryos (at the so-called blastocyst stage), the biologists injected pluripotent stem cells from a rat into them. The pluripotent stem cells, which can transform into any cell type of the body, automatically filled in for the missing organ. Presto: The result was mice with functional rat pancreases.

Such were the origins of the chimera organ-making technique, and Nakauchi’s group, today based at Stanford University, along with other research labs, are now setting their sights on producing human organs — by taking pluripotent stem cells that are generated from a person’s skin or blood cells and implanting those into pre-embryos of pigs and sheep.

For some ethicists, human-animal chimeras, on the face of it, simply violate human dignity. Another worry is a small risk that pig-grown organs might transmit deadly swine viruses into the human population, a hazard that begs careful examination. And then there are fears about other unintended consequences. What if, for example, human stem cells inserted into pig pre-embryos form into human sperm or eggs, and the pig and human gametes could fertilize each other? Or what if human cells incorporate into the animals’ brains — could that confer “humanized” thoughts or behaviors? Might the pigs even have freakish human-like external features?

The scientists at the forefront of this research have said that due to biological barriers, these effects shouldn’t happen, and they’re working to build in safeguards to ensure that human stem cells develop only as the desired target organs.

But perhaps the biggest moral considerations have to do with the ever-controversial issue of animal welfare. If a human liver or pancreas doesn’t integrate well into a chimeric pig’s innards, could that cause discomfort or alter the functioning of neighboring organs? Is it ethical to turn pigs into organ factories, bred solely for human purposes? On the latter, animal rights advocates would say no. But as long as it’s societally acceptable to farm pigs for food, some ethicists point out, it’s hard to argue that killing them for medical uses is wrong. “I think in a world in which people still eat animals daily on a mass scale, using them for organ creation is maybe more ethical than eating them,” David Shaw, a Scottish philosopher at Maastricht University in the Netherlands, told me.

Of course, in the broader picture, once you start looking at using pigs as organ banks, other conceivable scenarios come up — and, like Gartner at UCSF suggested, each may present its own moral can of worms.

“I think in a world in which people still eat animals daily on a mass scale, using them for organ creation is maybe more ethical than eating them.”

Would monkeys or even chimpanzees, our closest evolutionary relatives, provide better hosts for human organs? And if it’s wrong to use non-human primates to such ends, what if, as Shaw and a few other creative thinkers have speculated, it were someday possible to knock out a few key brain-development genes to create a “brainless” host body? Theoretically, there would be no ethical objection to using brainless bodies of humans (or other primates) as organ farms, Shaw told me, since such entities wouldn’t be “persons” capable of experiencing consciousness, sentience or suffering. Indeed, an edgy blog post by two other academics discussed the hypothetical alternative of farming organs in brainless humans that are gestated in external artificial “wombs.”

If dystopian scenes from “The Matrix” leap to mind, you’re not alone. Still, what sounds crazy now might not seem crazy in 30 years. Who knows? Once upon a time, IVF was an alarming and distasteful or sacrilegious notion to many people, yet today, almost no one blinks an eye at test-tube babies.

In August 2016, nine months after holding a fall 2015 workshop to review the concerns about blastocyst complementation research, the NIH announced its intention to lift its funding ban — pending a proposed update to its policy restrictions on funding of stem cell science. That proposal drew more than 21,000 public comments, most of them against creating human-animal chimeras; some commenters called the work “immoral” and “disgusting,” akin to creating Frankenstein’s monsters.

With the arrival of the Trump administration, the proposal has stalled, and the federal funding moratorium remains in place. Still, the research continues. But public sensitivities — such as those expressed in the feedback to the NIH — may be the ultimate barrier for radical organ-farming technologies, ethicists say. That’s why starting a public conversation sooner, rather than later, to explain and discuss their potential benefits and costs for society is probably a good idea.

“It’s important to listen to those concerns and to think about them really carefully and to address them,” Jonathan Kimmelman, a bioethicist at McGill University in Montreal, Canada, told me. It’s also important for people to realize that it usually takes years to decades for a new concept at the lab bench to reach medical clinics — and by then, the clinical application often looks quite different than the original idea, he added. Ideally, researchers should engage with the public “not after the science has developed, but as the science, or even before the science and applications, are developing.”

In the meantime, Shaw, the philosopher, pointed out that expensive new organ-growing technologies will likely be affordable only to the rich. So he suggests that perhaps we can put speculations aside and make a greater effort to increase the supply of donor organs in the here and now, even if they don’t provide perfect matches for recipients.

“If everyone registered as an organ donor and spoke to their families and told them they wanted to be organ donors,” he told me, “we probably wouldn’t be having this conversation.”

Ingfei Chen is a California-based writer whose stories have appeared in publications including Scientific American, The New York Times, and Spectrum. She is a former Knight Science Journalism fellow at MIT.

Email us at if you’d like to seek input on a quandary of your own. Undark will talk to experts on ethics, philosophy, or standards of ethical scientific or journalistic practice and share their best wisdom on possible solutions. For those wishing anonymity, we’ll withhold your name from any resulting Q&A items that we publish.

Top visual: Undark
See What Others Are Saying

8 comments / Join the Discussion

    A seldom discussed ethical issue around organ transplantation is the issue of tolerance. It is possible to induce immunological tolerance to particular antigens while still in the womb or for a brief period outside of it, similar to the way that some twins are immunlogically identical and can exchange tissues. However, developing or implementing a technology that was based around wide adoption of an early childhood intervention of any kind would be culturally and ethically very difficult. Despite the potential to save many lives without needing to invent entirely new (and also ethically suspect) ways of raising clone bodies or humanized animals, it remains stillborn


    Thyroid Gland Location

    This short video demonstrates the thyroid gland location and surrounding structures.
    The thyroid gland location video is narrated and rotates to allow better visualization.
    In this animation, I mention the thyroid gland’s relationship to other anatomical structures.
    I did not mention its relationship to major arteries and veins.

    The thyroid gland is medial (closer to the midline) to the common carotid arteries and
    the internal jugular veins. The thyroid gland is fed by the superior and inferior
    thyroid arteries. Like most endocrine glands, it’s highly vascular.

    Thyroid Gland Function

    The thyroid gland is an endocrine organ. The function of endocrine organs
    is to secrete hormones. Hormones are the chemical signals that cause an effect
    in another tissue. The thyroid gland affects every type of known tissue.
    It releases thyroid hormones to increase metabolism in tissues.

    Metabolism is the rate of chemical reactions in tissue cells.
    Basically, how fast tissue cells use oxygen and nutrients to
    form energy and heat. When thyroid hormone levels are high,
    metabolism speeds up but when they are low, metabolism slows down.


    I’d be interested in learning how far we have to go from growing patients’ own external organs inside an arm, using molds of autologous cartilage, to growing internal organs. Given that the ears and noses grown this way have been complete with nerves and vessels, there would seem to be at least some overlap.


    The seed information to accomplish alt-vitro organ generation has become known. What has been learned cannot be unlearned. So restricting public research under the NIH will not control the eventual implementation of such advances. The rewards to those with the means to finance this research on their own and without oversight are too great. If this were to happen, the public would lose in at least two ways. First, the applications developed would be privatized, monetized and/or available only to the principal investors. Second, the ability to direct the research would be minimal. Better to have these developments take place in the sunshine, otherwise they will surely take place in the dark.


    I’ve had a kidney transplant for 6 months shy of 20 years, a gift from my still healthy sister. I have worked full time since a month after the surgery, learned to snowboard, gotten married, taken countless fantastic trips around the world and been able to enjoy all that life has to offer.

    Until someone knows the tragedy of organ failure in their own or a loved one’s life, there is no way to understand how important this research is, or how important replacement organs are for those who need them. We sacrifice animals all the time for food, a life sustaining product, so I don’t see much difference if we can grow life sustaining organs for those in need.


    Very interesting article. It strikes me that it’s hard to remain inbounds when I think about this. There are so many related issues – policies and practices related to health care, for-profit medicine, ethical treatment of animals, the connection between self-awareness and how we value a living thing, the destructive ecological forces humans routinely visit on the planet, and on and on. But when I do my best to stick to the question at hand, I know where I stand. Should we create organs for humans, even if it means killing animals? My thinking (as a non-vegitarian who wears leather boots) is obvious: yes. I agree, however, that we should also foster organ donation. Two countries very alike in some ways suggest how to do this. As Dan Kahneman points out in “Thinking, Fast and Slow,” Austria has an opt-out system of organ donation, while Germany has an opt-in system. Austria’s organ donation rate: north of 95%. German rate: south of 15%.

    This points to two things: we shouldn’t be going hungry so often when there’s such low-hanging fruit. Also, humans seem to be much better at inaction than they are at action.


    As a teenager I read the book “The Long ARM of Gil Hamilton”.

    The book imagined a future where society dreamed up many unpleasant ways to inflate the supply of replacement organs.

    When/if one of my organs fails, if a pig can supply a replacement, I am all-in.

Join the discussion

Your email address will not be published. Required fields are marked *


& Tipsters

Corruption in science?
Academic discrimination?
Research censorship?
Government cover-ups?

Undark wants to hear about it.

Email us at, or visit our contact page for more secure options.